Potential of Stem Cells in Dental Pulp Regeneration:
As Integrative Review of Recent Literature
DOI:
https://doi.org/10.36557/2009-3578.2025v11n2p2348-2359Keywords:
Regenerative Endodontics, Stem Cells, Dental Pulp, Biomaterials, Tissue Regeneration.Abstract
Regenerative endodontics has emerged as a promising alternative to conventional root canal therapy, aiming not only to eradicate infection but also to restore the vitality and physiological functions of dental pulp. The progress of this field is strongly associated with the use of mesenchymal stem cells derived from dental tissues, such as dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), stem cells from the apical papilla (SCAP), and periodontal ligament stem cells (PDLSCs). These cells exhibit remarkable differentiation potential into odontoblasts, fibroblasts, and endothelial cells, all of which are essential for dentin-pulp complex regeneration. Recent studies have demonstrated that combining stem cells with biomaterials and signaling molecules supports dentin matrix deposition, angiogenesis, and partial reinnervation. Various bioactive scaffolds and molecules, such as allantoin, have shown encouraging effects on modulating cellular responses. Moreover, growing evidence highlights the role of epigenetic regulation in controlling stem cell proliferation and differentiation, opening new therapeutic avenues. Clinically, the choice of intracanal irrigants and medicaments has proven crucial for stem cell viability, with EDTA showing beneficial effects compared to the cytotoxicity of sodium hypochlorite. Adjuvant strategies such as photobiomodulation have also been explored to enhance regenerative outcomes. Despite these advances, most evidence remains limited to in vitro and animal studies, while randomized controlled clinical trials in humans are still scarce. Challenges such as protocol standardization, ethical and regulatory barriers, and clinical validation remain unresolved. Thus, although regenerative endodontics represents a new paradigm, its consolidation in daily practice will depend on robust translational research that bridges basic science and clinical dentistry.
Downloads
References
ABD RAHMAN, F.; AZWA, F. N. Comparative dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs): difference in effect of aspirin on osteoblast potential of PDLSCs and DPSCs. Tissue and Cell, v. 94, p. 102776, 2025. DOI: https://doi.org/10.1016/j.tice.2025.102776.
AYOUB, S.; CHEAYTO, A.; BASSAM, S.; NAJAR, M.; BERBÉRI, A.; FAYYAD-KAZAN, M. The effects of intracanal irrigants and medicaments on dental-derived stem cells fate in regenerative endodontics: an update. Stem Cell Reviews and Reports, v. 16, n. 4, p. 650-660, 2020. DOI: https://doi.org/10.1007/s12015-020-09982-9.
DUNCAN, H. F.; SMITH, A. J.; FLEMING, G. J.; COOPER, P. R. Epigenetic modulation of dental pulp stem cells: implications for regenerative endodontics. International Endodontic Journal, v. 49, n. 5, p. 431-446, 2016. DOI: https://doi.org/10.1111/iej.12475.
KADKHODA, Z.; MOTIE, P.; RAD, M. R.; MOHAGHEGH, S.; KOUHESTANI, F.; MOTAMEDIAN, S. R. Comparison of periodontal ligament stem cells with mesenchymal stem cells from other sources: a scoping systematic review of in vitro and in vivo studies. Current Stem Cell Research & Therapy, v. 19, n. 4, p. 497-522, 2024. DOI: https://doi.org/10.2174/1574888X17666220429123319.
LIU, Y.; GAN, L.; CUI, D. X.; YU, S. H.; PAN, Y.; ZHENG, L. W. et al. Epigenetic regulation of dental pulp stem cells and its potential in regenerative endodontics. World Journal of Stem Cells, v. 13, n. 11, p. 1647-1666, 2021. DOI: https://doi.org/10.4252/wjsc.v13.i11.1647.
LUO, Z.; YU, M.; SHEN, T. Research progress of dental pulp regeneration treatment. Zhong Nan Da Xue Xue Bao Yi Xue Ban, v. 49, n. 6, p. 989-997, 2024. DOI: https://doi.org/10.11817/j.issn.1672-7347.2024.240011.
MORSCZECK, C. Dental stem cells for tooth regeneration: how far have we come and where next? Expert Opinion on Biological Therapy, v. 23, n. 6, p. 527-537, 2023. DOI: https://doi.org/10.1080/14712598.2023.2208268.
MUTLU ÖZÇINAR, B.; ÖZÜKOÇ, C.; TÜRKMEN, E.; ÇAKIR, R. DPSCs, SHEDSCs, and PDLSCs isolation, characterization and the effectiveness of allantoin as bioactive molecule for dental regeneration. Journal of Dentistry, v. 154, p. 105604, 2025. DOI: https://doi.org/10.1016/j.jdent.2025.105604.
PARK, M. K.; KIM, S.; JEON, M.; JUNG, U. W.; LEE, J. H.; CHOI, H. J. et al. Evaluation of the apical complex and the coronal pulp as a stem cell source for dentin-pulp regeneration. Journal of Endodontics, v. 46, n. 2, p. 224-231.e3, 2020. DOI: https://doi.org/10.1016/j.joen.2019.10.025.
PULYODAN, M. K.; PARAMEL MOHAN, S.; VALSAN, D.; DIVAKAR, N.; MOYIN, S.; THAYYIL, S. Regenerative endodontics: a paradigm shift in clinical endodontics. Journal of Pharmacy & Bioallied Sciences, v. 12, supl. 1, p. S20-S26, 2020. DOI: https://doi.org/10.4103/jpbs.JPBS_112_20.
ROSAIAN, A. S.; RAO, G. N.; MOHAN, S. P.; VIJAYARAJAN, M.; PRABHAKARAN, R. C.; SHERWOOD, A. Regenerative capacity of dental pulp stem cells: a systematic review. Journal of Pharmacy & Bioallied Sciences, v. 12, supl. 1, p. S27-S36, 2020. DOI: https://doi.org/10.4103/jpbs.JPBS_121_20.
SIDDIQUI, Z.; ACEVEDO-JAKE, A. M.; GRIFFITH, A.; KADINCESME, N.; DABEK, K.; HINDI, D. et al. Cells and material-based strategies for regenerative endodontics. Bioactive Materials, v. 14, p. 234-249, 2021. DOI: https://doi.org/10.1016/j.bioactmat.2021.11.015.
THALAKIRIYAWA, D. S.; DISSANAYAKA, W. L. Advances in regenerative dentistry approaches: an update. International Dental Journal, v. 74, n. 1, p. 25-34, 2024. DOI: https://doi.org/10.1016/j.identj.2023.07.008.
XIE, Z.; SHEN, Z.; ZHAN, P.; YANG, J.; HUANG, Q.; HUANG, S. et al. Functional dental pulp regeneration: basic research and clinical translation. International Journal of Molecular Sciences, v. 22, n. 16, p. 8991, 2021. DOI: https://doi.org/10.3390/ijms22168991.
YONG, J.; GRÖGER, S.; WU, Z.; RUF, S.; YE, Y.; CHEN, X. Photobiomodulation therapy and pulp-regenerative endodontics: a narrative review. Bioengineering (Basel), v. 10, n. 3, p. 371, 2023. DOI: https://doi.org/10.3390/bioengineering10030371.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ana Luísa de Castro e Silva, Gabriel da Silva Costa, Rafael Arantes Soares Reis , Aléxia Caroline Leandro da Conceição , Jennifer Vera Santos Gumert, Ediliana Dias Chaves Campos de Amaral, Nataly Nascimento Lemos Cavanha

This work is licensed under a Creative Commons Attribution 4.0 International License.
Você tem o direito de:
- Compartilhar — copiar e redistribuir o material em qualquer suporte ou formato para qualquer fim, mesmo que comercial.
- Adaptar — remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.
De acordo com os termos seguintes:
- Atribuição — Você deve dar o crédito apropriado , prover um link para a licença e indicar se mudanças foram feitas . Você deve fazê-lo em qualquer circunstância razoável, mas de nenhuma maneira que sugira que o licenciante apoia você ou o seu uso.
- Sem restrições adicionais — Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.