APLICACIÓN DE LA INTELIGENCIA ARTIFICIAL EN LA DETECCIÓN DEL ALZHEIMER MEDIANTE RESONANCIA MAGNÉTICA: UNA REVISIÓN SISTEMÁTICA
DOI:
https://doi.org/10.36557/2009-3578.2025v11n2p835-854Palabras clave:
nfermedad de Alzheimer; Inteligencia Artificial; Resonancia Magnética; Aprendizaje Profundo; Diagnóstico por Imagen.Resumen
Objetivo: Evaluar la aplicación de la Inteligencia Artificial (IA) en la detección de la Enfermedad de Alzheimer (EA) mediante Resonancia Magnética (MRI) a través de una revisión sistemática de la literatura. Métodos: Revisión sistemática siguiendo el protocolo PRISMA, buscando en las bases de datos PubMed/MEDLINE, Scopus y Web of Science, seleccionando artículos Qualis A publicados entre 2022-2025. Se aplicaron estrictos criterios de inclusión/exclusión y evaluación de la calidad metodológica mediante AMSTAR 2. Resultados: Se incluyeron cinco estudios en la síntesis cualitativa y tres en la síntesis cuantitativa. Las técnicas de aprendizaje profundo, especialmente las Redes Neuronales Convolucionales (CNN), demostraron una precisión superior (89%) en comparación con los métodos tradicionales de aprendizaje automático (76-86%) en la clasificación de la EA frente a controles normales. La IA Explicable (XAI) surgió como un enfoque prometedor para la interpretabilidad. Los biomarcadores identificados incluyen atrofia hipocampal, hiperintensidades de la sustancia blanca y alteraciones en la conectividad funcional. Conclusión: La IA representa una herramienta prometedora para el diagnóstico de EA mediante resonancia magnética, pero requiere estudios multicéntricos con una validación externa sólida para una implementación clínica efectiva.
Descargas
Citas
ADADI, A.; BERRADA, M. Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access, v. 6, p. 52138-52160, 2018.
ALZHEIMER’S DISEASE INTERNATIONAL. World Alzheimer Report 2022: Life after diagnosis: navigating treatment, care and support. London: ADI, 2022.
BATTINENI, G. et al. Machine Learning Driven by MRI for Classification of Alzheimer Disease Progression. JMIR Aging, v. 7, e59370, 2024.
BEACH, T. G. et al. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005-2010. Journal of Neuropathology & Experimental Neurology, v. 71, n. 4, p. 266-273, 2012.
BRON, E. E. et al. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. NeuroImage, v. 111, p. 562-579, 2015.
CHAMAKURI, S. et al. A systematic review on recent methods on deep learning for automatic detection of Alzheimer’s disease. Medicine in Novel Technology and Devices, v. 20, p. 100285, 2024.
CUMMINGS, J. et al. Alzheimer’s disease drug development pipeline: 2023. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, v. 9, n. 2, e12385, 2023.
EBRAHIMIGHAHNAVIEH, M. A.; LUO, S.; CHIONG, R. Deep learning to detect Alzheimer’s disease from neuroimaging: A systematic literature review. Computer Methods and Programs in Biomedicine, v. 187, p. 105242, 2020.
FRISONI, G. B. et al. The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, v. 6, n. 2, p. 67-77, 2010.
FRIZZELL, T. O. et al. Artificial intelligence in brain MRI analysis of Alzheimer’s disease over the past 12 years: A systematic review. Ageing Research Reviews, v. 77, p. 101614, 2022.
JACK JR, C. R. et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, v. 14, n. 4, p. 535-562, 2018.
KHOSROSHAHI, S. M. et al. Explainable Artificial Intelligence in Neuroimaging of Alzheimer’s Disease: A Systematic Review. Diagnostics, v. 15, n. 2, p. 198, 2025.
KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, v. 60, n. 6, p. 84-90, 2017.
LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, v. 521, n. 7553, p. 436-444, 2015.
LITJENS, G. et al. A survey on deep learning in medical image analysis. Medical Image Analysis, v. 42, p. 60-88, 2017.
MCKHANN, G. M. et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, v. 7, n. 3, p. 263-269, 2011.
PAGE, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, v. 372, n. 71, 2021.
PELLEGRINI, E. et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic review. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, v. 10, p. 519-535, 2018.
PRINCE, M. et al. World Alzheimer Report 2015: The Global Impact of Dementia - An analysis of prevalence, incidence, cost and trends. London: Alzheimer’s Disease International, 2015.
RATHORE, S. et al. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. NeuroImage, v. 155, p. 530-548, 2017.
RUDIN, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, v. n. 5, p. 206-215, 2019.
SCHELTENS, P. et al. Alzheimer’s disease. The Lancet, v. 397, n. 10284, p. 1577-1590, 2021.
SHEA, B. J. et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ, v. 358, j4008, 2017.
TANVEER, M. et al. Machine learning techniques for the diagnosis of Alzheimer’s disease: A review. ACM Transactions on Multimedia Computing, Communications, and Applications, v. 16, n. 1s, p. 1-35, 2020.
WARREN, S. L.; MOUSTAFA, A. A. Functional MRI, deep learning, and Alzheimer’s disease: A systematic review. Journal of Neuroimaging, v. 33, n. 1, p. 5-18, 2023.
WEINER, M. W. et al. The Alzheimer’s Disease Neuroimaging Initiative 3: Continued innovation for clinical trial improvement. Alzheimer’s & Dementia, v. 13, n. 5, p. 561-571, 2017.
WEN, J. et al. Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Medical Image Analysis, v. 63, p. 101694, 2020.
WIMO, A. et al. The worldwide costs of dementia in 2019. Alzheimer’s & Dementia, v. 19, n. 7, p. 2865-2873, 2023.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Michel Cardoso da Costa, Ana Paula Laporta

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Você tem o direito de:
- Compartilhar — copiar e redistribuir o material em qualquer suporte ou formato para qualquer fim, mesmo que comercial.
- Adaptar — remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.
De acordo com os termos seguintes:
- Atribuição — Você deve dar o crédito apropriado , prover um link para a licença e indicar se mudanças foram feitas . Você deve fazê-lo em qualquer circunstância razoável, mas de nenhuma maneira que sugira que o licenciante apoia você ou o seu uso.
- Sem restrições adicionais — Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.