APLICAÇÃO DA INTELIGÊNCIA ARTIFICIAL NA DETECÇÃO DO ALZHEIMER VIA RESSONÂNCIA MAGNÉTICA: UMA REVISÃO SISTEMÁTICA

Autores

  • Michel Cardoso da Costa Hospital Israelita Albert Einstein
  • Ana Paula Viera Nunes Laporta

DOI:

https://doi.org/10.36557/2009-3578.2025v11n2p835-854

Palavras-chave:

Doença de Alzheimer; Inteligência Artificial; Ressonância Magnética; Deep Learning; Diagnóstico por Imagem.

Resumo

Objetivo: Avaliar a aplicação da Inteligência Artificial (IA) na detecção da Doença de Alzheimer (DA) via Ressonância Magnética (RM) através de uma revisão sistemática da literatura. Métodos: Revisão sistemática seguindo protocolo PRISMA, com busca nas bases PubMed/MEDLINE, Scopus e Web of Science, selecionando artigos Qualis A publicados entre 2022-2025. Foram aplicados critérios rigorosos de inclusão/exclusão e avaliação da qualidade metodológica usando AMSTAR 2. Resultados: Cinco estudos foram incluídos na síntese qualitativa e três na síntese quantitativa. Técnicas de deep learning, especialmente Redes Neurais Convolucionais (CNNs), demonstraram precisão superior (89%) comparado a métodos tradicionais de machine learning (76-86%) na classificação DA vs. controles normais. A IA Explicável (XAI) emergiu como abordagem promissora para interpretabilidade. Biomarcadores identificados incluem atrofia hipocampal, hiperintensidades da substância branca e alterações na conectividade funcional. Conclusão: A IA representa ferramenta promissora para diagnóstico da DA via RM, mas requer estudos multicêntricos com validação externa robusta para implementação clínica efetiva.

Downloads

Não há dados estatísticos.

Referências

ADADI, A.; BERRADA, M. Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access, v. 6, p. 52138-52160, 2018.

ALZHEIMER’S DISEASE INTERNATIONAL. World Alzheimer Report 2022: Life after diagnosis: navigating treatment, care and support. London: ADI, 2022.

BATTINENI, G. et al. Machine Learning Driven by MRI for Classification of Alzheimer Disease Progression. JMIR Aging, v. 7, e59370, 2024.

BEACH, T. G. et al. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005-2010. Journal of Neuropathology & Experimental Neurology, v. 71, n. 4, p. 266-273, 2012.

BRON, E. E. et al. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. NeuroImage, v. 111, p. 562-579, 2015.

CHAMAKURI, S. et al. A systematic review on recent methods on deep learning for automatic detection of Alzheimer’s disease. Medicine in Novel Technology and Devices, v. 20, p. 100285, 2024.

CUMMINGS, J. et al. Alzheimer’s disease drug development pipeline: 2023. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, v. 9, n. 2, e12385, 2023.

EBRAHIMIGHAHNAVIEH, M. A.; LUO, S.; CHIONG, R. Deep learning to detect Alzheimer’s disease from neuroimaging: A systematic literature review. Computer Methods and Programs in Biomedicine, v. 187, p. 105242, 2020.

FRISONI, G. B. et al. The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, v. 6, n. 2, p. 67-77, 2010.

FRIZZELL, T. O. et al. Artificial intelligence in brain MRI analysis of Alzheimer’s disease over the past 12 years: A systematic review. Ageing Research Reviews, v. 77, p. 101614, 2022.

JACK JR, C. R. et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, v. 14, n. 4, p. 535-562, 2018.

KHOSROSHAHI, S. M. et al. Explainable Artificial Intelligence in Neuroimaging of Alzheimer’s Disease: A Systematic Review. Diagnostics, v. 15, n. 2, p. 198, 2025.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, v. 60, n. 6, p. 84-90, 2017.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, v. 521, n. 7553, p. 436-444, 2015.

LITJENS, G. et al. A survey on deep learning in medical image analysis. Medical Image Analysis, v. 42, p. 60-88, 2017.

MCKHANN, G. M. et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, v. 7, n. 3, p. 263-269, 2011.

PAGE, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, v. 372, n. 71, 2021.

PELLEGRINI, E. et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic review. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, v. 10, p. 519-535, 2018.

PRINCE, M. et al. World Alzheimer Report 2015: The Global Impact of Dementia - An analysis of prevalence, incidence, cost and trends. London: Alzheimer’s Disease International, 2015.

RATHORE, S. et al. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. NeuroImage, v. 155, p. 530-548, 2017.

RUDIN, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, v. n. 5, p. 206-215, 2019.

SCHELTENS, P. et al. Alzheimer’s disease. The Lancet, v. 397, n. 10284, p. 1577-1590, 2021.

SHEA, B. J. et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ, v. 358, j4008, 2017.

TANVEER, M. et al. Machine learning techniques for the diagnosis of Alzheimer’s disease: A review. ACM Transactions on Multimedia Computing, Communications, and Applications, v. 16, n. 1s, p. 1-35, 2020.

WARREN, S. L.; MOUSTAFA, A. A. Functional MRI, deep learning, and Alzheimer’s disease: A systematic review. Journal of Neuroimaging, v. 33, n. 1, p. 5-18, 2023.

WEINER, M. W. et al. The Alzheimer’s Disease Neuroimaging Initiative 3: Continued innovation for clinical trial improvement. Alzheimer’s & Dementia, v. 13, n. 5, p. 561-571, 2017.

WEN, J. et al. Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Medical Image Analysis, v. 63, p. 101694, 2020.

WIMO, A. et al. The worldwide costs of dementia in 2019. Alzheimer’s & Dementia, v. 19, n. 7, p. 2865-2873, 2023.

Downloads

Publicado

2025-07-24

Como Citar

Cardoso da Costa, M., & Viera Nunes Laporta, A. P. (2025). APLICAÇÃO DA INTELIGÊNCIA ARTIFICIAL NA DETECÇÃO DO ALZHEIMER VIA RESSONÂNCIA MAGNÉTICA: UMA REVISÃO SISTEMÁTICA. INTERFERENCE: A JOURNAL OF AUDIO CULTURE, 11(2), 835–854. https://doi.org/10.36557/2009-3578.2025v11n2p835-854

Edição

Seção

Revisão Sistemática