Desempenho de bactérias diazotróficas aplicadas em tratamento de sementes e foliar na cultura do milho no Arenito Caiuá
DOI:
https://doi.org/10.36557/2009-3578.2025v11n2p3081-3110Palavras-chave:
Zea mays L., coinoculação, bactérias promotoras do crescimento, agricultura sustentávelResumo
O trabalho teve como objetivo avaliar o efeito da inoculação via sementes e aplicação foliar de Azospirillum brasilense, Bacillus subtilis e Bacillus megaterium, isolados ou combinados, sobre características vegetativas e produtivas do milho na região Noroeste do estado do Paraná. O estudo foi conduzido em duas safras, em experimentos em parcelas subdivididas, no qual as parcelas principais foram constituídas pelos tratamentos de sementes e as subparcelas por aplicação foliar ou não. Foram utilizados quatro tratamentos de sementes [testemunha; Azospirillum; solubilizador de P (B. subtilis e B. megaterium); Azospirillum brasiliense + solubilizador de P] e as aplicações foliares (com e sem Azospirillum brasiliense), em blocos casualizados com três repetições. Foram avaliadas variáveis morfoagronômicas, relacionadas à produtividade e teor de clorofila. No Ensaio 1, a coinoculação associada à aplicação foliar apresentou a maior massa seca de espiga (135,24 g) e colmo (324,32 g), superando a testemunha em 86% e 25%, respectivamente. O diâmetro de colmo atingiu 29,69 mm frente a 23,36 mm na testemunha, enquanto o comprimento de espiga foi de 13,36 cm. No Ensaio 2, a massa seca de espiga alcançou valores de 198,22 g contra 95,70 g e a massa seca de colmo foi de 310,41 g, com aplicação foliar em contraste com valores de 121,94 g sem aplicação, além de comprimento de espiga de 22,33 cm, até 10% superior à testemunha. Esses resultados demonstram que a combinação entre inoculação de sementes com Bacillus e aplicação foliar com A. brasiliense potencializa o desempenho agronômico da cultura do milho, promovendo ganhos em biomassa e nas variáveis biométricas, com consistência entre safras e potencial para reduzir o uso de fertilizantes minerais.
Downloads
Referências
ALI, Q.; AHMAD, M.; KAMRAN, M.; ASHRAF, S.; SHABAAN, S.; BABAR, B.H.; ZULFIQAR, U.; HAIDER, F.U.; ALI, M.A.; ELSHIKH, M.S. SYNERGISTIC EFFECTS OF RHIZOBACTERIA AND SALICYLIC ACID ON MAIZE SALT-STRESS TOLERANCE. Plants, Basel, v.12, n.1, p.1-17, 2023.
BIJAY-SINGH, CRASWELL, E. Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences, Heidelberg, v.3, n.518, p.1-15, 2021.
BOUKHALFA-DERAOUI, N.; HANIFI-MEKLICHE, L.; MEKLICHE, A. Response of Wheat to Foliar and Soil P Fertilization on Grain Yield and Phosphorus use Efficiency in Southeastern Algeria. Indian Journal of Agricultural Research, New Delhi, v.55, n.1, p.99-104, 2021.
CAKIR, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research, Kirklareli, v.89, n.1, p.1-16, 2004.
CARSTENSEN, A.; HERDEAN, A.; SCHMIDT, S.B.; SHARMA, A.; SPETEA, C.; PRIBIL, M.; HUSTED, S. The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiology, Oxford, v.177, n.1, p.271-184, 2018.
CHOQUETTE, N.E.; HOLLAND, J.B.; WELDEKIDAN, T.; DROUAULT, J.; LEON, N.; FLINT-GARCIA, S.; LAUTER, N.; MURRAY, S.C.; XU, W.; WISSER, R.J. Environment-specific selection alters flowering-time plasticity and results in pervasive pleiotropic responses in maize. New Phytologist, Lancaster, v.238, n.1, p.737-749, 2023.
COLUSSI, J.; SCHNITKEY, G. Rising Fertilizer Prices to Affect Brazil’s Largest Corn Crop. FarmadocDaily, Urbana, v.11, n.154, p 2-8, 2020.
CREATIVE PROTEOMICS, ATP in Plants: Roles in Photosynthesis and Energy Production. 2025. ATP: Structure and Functions in Plants. 2025. Disponível em: https://www.creative-proteomics.com/resource/atp-in-plants-roles-photosynthesis-energy-production.htm?utm_source. Acesso em: 20 jul. 2025.
ETESAMI, H. e MAHESHWARI, D.K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, Amsterdan, v.156, n.1, p.225–246, 2018.
FRATTINI, N; CARRASQUERO, A.P.; PRONSATO, L.; MILANESI, L.; VASCONSUELO, A. Effects of common fertilizers on the soil ecosystem. Bulletin of the National Research Centre, Dokki, v.47, n.78, p.1-7, 2023.
FUKAMI, J.; CEREZINI, P.; HUNGRIA, M. Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express, Heidelberg, v,8, n.1, p.1-12, 2018.
GAO, J.; ZHUANG, S.; ZHANG, W. Advances in Plant Auxin Biology: Synthesis, Metabolism, Signaling, Interaction with Other Hormones, and Roles under Abiotic Stress. Plants, Basel, v.8, n.13, p.17-26, 2024.
GARCÍA, J.E.; MARONICHE, G.; CREUS, C.; SUÁREZ-RODRÍGUEZ, R.; RAMIREZ-TRUJILLO, J.A.; GROPPA, M.D. In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiololical Research, Amsterdan, v.202, n.1, p.21-29, 2017.
GLICK, B.R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, Amsterdan, v.169, n.1, p.30-39, 2014.
GONÇALVES JUNIOR, A.C.; NACKE, H.; SCHWANTES, D.; COELHO, G.F. Heavy Metal Contamination in Brazilian Agricultural Soils due to Application of Fertilizers. In: HERNANDEZ-SORIANO, M.C. (Ed.) Environmental Risk Assessment of Soil Contamination. Intechopen: Londres, 2014. p.105-136.
GROVER, M.; BODHANKAR, S.; SHARMA, A.; SHARMA, P.; SINGH, J.; NAIN, L. PGPR mediates alterations in root traits: way toeard sustainable crop production. Frontiers in Sustainable Food Systems, Lausanne, v.4, n.1, p.1-28, 2021.
HOUSH, A.B.; NOEL, R.; POWER, A.; WALLER, S.; WILDER, S.L.; SOPKO, S.; BENOIT, M.; POWELL, G.; SCHUELLER, M.J.; FERRIERI, R.A. Studies using mutant strains of Azospirillum brasilense reveal that atmospheric nitrogen fixation and auxin production are light dependent processes. The Hidden World within Plants 2.0, Basel, v.11, n.7, p.12-19, 2023.
HUANG, D.; WANG, Q.; JING, G.; MA, M.; LI, C.; MA, F. Overexpression of MdIAA24 improves apple drought resistance by positively regulating strigolactone biosynthesis and mycorrhization. Tree Physiology, Oxford, v.41, n.1, p.1-19, 2021.
IQBAL, A.; QIANG, D.; XIANGRU, W.; HUIPING, G.; HENGHENG, Z.; XILING, Z.; MEIZHEN, S. Genotypic variation in cotton genotypes for low phosphorus tolerance and efficiency under different growth conditions. Journal of Crop Health, Berlim, v,75, n.1, p.1975-1993, 2023.
KALAYU, G. Phosphate Solubilizing Microorganisms: Promising Approach as Biofertilizers. International Journal of Agronomy, London, v.2019, n.2019, p.1-8, 2019.
KELBESSAL, B.G.; DUBEY, M.; CATARA, V.; GHADAMGAHI, F.; ORTIZ, R.; VETUKURI, R.R. Potential of plant growth-promoting rhizobacteria to improve crop productivity and adaptation to a changing climate. CABI Reviews, Wallingford, v.2023, n.2023, 2023.
KOU, E.; HUANG, X.; ZHU, Y.; SU, W.; LIU, H.; SUN, G.; CHEN, R.; HAO, Y.; SONG, S. Crosstalk between auxin and gibberellin during stalk elongation in flowering Chinese cabbage. Scientific Reports, London, v.11, n.1, p.1-18, 2021.
LADHA, J.K.; TIROL-PADRE, A.; REDDY, C.K.; CASSMAN, K.G.; VERMA, S.; POWLSON, D.S.; VAN KESSEL, C.; RICHTER, D.d.B.; CHAKRABORTY, D.; PATHAK, H. Global Nitrogen Budgets in Cereals: A 50-Year Assessment for Maize, Rice and Wheat Production Systems. Scientiific Reports, London, v.6, n.19355, p.2-11, 2016.
LANA, M.C.; DARTORA, J.; MARINI, D.; HANN, J.E. Inoculation with Azospirillum, associated with nitrogen fertilization in maize. Ceres, Viçosa, v.59, n.3, p.399-405, 2012.
LOLLATO, R.P.; FIGUEIREDO, B.M.; DHILLON, J.S.; ARNALL, D.B.; RAUN, W.R. Wheat grain yield and grain-nitrogen relationships as affected by N, P, and K fertilization: a synthesis of long-term experiments. Fields Crops Research, Amsterdam, v.236, n.1, p.42-57, 2019.
LÓPEZ-MALVAR, A.; MAIN, O.; GUILLAUME, S.; JACQUEMONT, M.P.; MEUNIER, F.; REVILLA, P.; SANTIAGO, R.; MECHIN, V.; REYMOND, M. Genotype-dependent response to water deficit: increases in maize cell wall digestibility occurs through reducing both p-coumaric acid and lignification of the rind. Frontiers in Plant Science, Lausanne, v.16, n.1, p.1-18, 2025.
LUO, D.; SHI, J.; LI, M.; CHEN, J.; WANG, T.; ZHANG, Q.; YANG, L.; ZHU, N.; WANG, Y. Consortium of phosphorus-solubilizing bacteria promotes maize growth and changes the microbial community composition of rhizosphere soil. Agronomy, Basel, v.14, n.7, p.1-17, 2024.
MAGALHÃES, S.P.; SILVA, F.G.; CORDOVIL, H.P.L.; TENÓRIO, A.N.R.S. Plant growth-promoting bacteria in alleviating saline stress and water deficit in agriculture. Contribuciones a Las Ciencias Sociales, São José dos Pinhais, v.17, n.6, p.01-24, 2024.
MAJDA, M.; ROBERT, S. The role of auxin in cell wall expansion. International Journal of Molecular Sciences, Basel, v.19, n.1, p.2-21, 2018.
MARKS, B.B.; MEGÍAS, M.; OLLERO, F.J.; NOGUEIRA, M.A.; ARAUJO, R.S.; HUNGRIA, M. Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipo-chitooligosaccharides (LCOs). AMB Express, Heidelberg, v,5, n.71, p.1-11, 2015.
MUKHTAR, T.; ALI, F.; RAFIQUE, M.; ALI, J.; AFRIDI, M.S.; SMITH, D.; MEHMOOD, S.; AMNA, SOULEIMANOV, A.; JELLANI, G.; SULTAN, T.; MUNIS, F.H.; CHAUDHARY, H.J. Biochemical Characterization and Potential of Bacillus safensis Strain SCAL1 to Mitigate Heat Stress in Solanum lycopersicum L. Journal of Plant Growth Regulation, Cham, v.42, n.1, p.523-538, 2023.
MÜLLER, W.E.G.; WANG, S.; NEUFURTH, M.; KOKKINOPOULOU, M.; FENG, Q.; SCHRÖDER, H.C.; WANG, X. Polyphosphate as a donor of high-energy phosphate for the synthesis of ADP and ATP. Journal of Cell Science, Cambridge, v.130, n.16, p.2747-2756, 2017.
PACHECO, D.S.; GIACOMIN, E.L.; CAMPOS, T.K.; BARRETO, C.F.; UBESSI, C.; SILVEIRA, D.C. Desempenho de milho inoculado com azospirillum brasilense. Revista de Agronomia e Medici na Veterinária, Umuarama, v.11, n.2, p.1-18, 2024.
PAULETTI, V. & MOTTA, A. C. V. Manual de calagem e adubação para o estado do Paraná. 2 ed. Núcleo Estadual Paraná da Sociedade Brasileira de Ciência do Solo – NEPAR-SBCS: Curitiba, 2019
PEREIRA, N.C.M.; GALINDO, F.S.; GAZOLA, R.P.D.; DUPAS, E.; ROSA, P.A.L.; MORTINHO, E.S.; TEIXEIRA FILHO, M.C.M. Corn yield and phosphorus use efficiency response to phosphorus rates associated with plant growth promoting bacteria. Frontiers in Environmental Science, Lausanne, v.8, n.1, p.1-19, 2020.
PEREIRA, S.I.A.; CASTRO, P.M.L. Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecological Engineering, Amsterdam, v.73, n.2, p.526-535, 2014.
POIRIER, Y.; JASKOLOWSKI, A.; CLÚA, J. Phosphate acquisition and metabolism in plants. Current Biology, Cambridge, v.32, n.12, p.623-629, 2022.
PUENTE, M.L.; GUALPA, J.L.; LOPEZ, G.A.; MOLINA, R.M.; CARLETTI, S.M.; CASSÁN, F.D. The benefits of foliar inoculation with Azospirillum brasilense in soybean are explained by an auxin signaling model. Symbiosis, Netherlands, v.76, n.1, p.41–49, 2018.
RODRIGUES, G.L.; MATTEOLI, F.; GAZARA, R.K.; RODRIGUES, P.S.L.; SANTOS, S.T.; ALVES, A.F.; PEDROSA-SILVA, F.; OLIVEIRA-PINHEIRO, I.; CANEDO-ALVRENGA, D.; OLIVARES, F.L. VENANCIO, T.M. Characterization of cellular, biochemical and genomic features of the diazotrophic plant growth-promoting bacterium Azospirillum sp. UENF-412522, a novel member of the Azospirillum genus. Microbiological Research, Amsterdam, v.254, n.1, p.1-15, 2022.
RUIZ, A.; LISTELLO, A.; TRIFUNOVIC, S.; ARCHONTOULIS, S.V. Maize breeding enhances lodging resistance through vertical allocation changes of stem dry matter and nitrogen. Frontiers in Plant Science, Lausanne, v.16, n.1, p.1-10, 2025.
SAENGWILAI, P.J.; BOOTTIA, P.; KLINNAWEE, L. Responses of rubber tree seedlings (Hevea brasiliensis) to phosphorus deficient soils. Soil, Science and Plant Nutrition, Tóquio, v.69, n.2, p.78-87, 2023.
SHILEV, S. Plant-growth-promoting bacteria mitigating soil salinity stress in plants. Applied Sciences-Basel, Basel, v.10, n.20, p.26-39. 2020
SHIN, W.; RASHEDUL, I.; ABITHA, B.; MELVIN, J.M.; KIYOON, K.; SELVAKUMAR, G.; SANDIPAN, S.; SOMAK, B.; TONGMIN, S. Role of Diazotrophic Bacteria in Biological Nitrogen Fixation and Plant Growth Improvement. Korean Journal of Soil Science and Fertilizer, Seul, v.49, n.1, p.17-29, 2016.
TAIZ, L.; ZEIGER, E.; MOLLER, I. A.; MURPHY, A. Fisiologia e desenvolvimento vegetal. Artmed: Porto Alegre, 2017. 858p.
TIMMUSK, S.; BEHERS, L.; MUTHONI, J.; MURAYA, A.; ARONSSON, A.C. Perspectives and Challenges of Microbial Application for Crop Improvement. Front. Plant Science, Lausanne, v.8, n.49, p.1-11, 2017.
TIMOFEEVA, A.M.; GALYAMOVA, M.R.; SEDYKH, S.E. Plant Growth-Promoting Soil Bacteria: Nitrogen Fixation, Phosphate Solubilization, Siderophore Production, and Other Biological Activities Plants, Basel, v.12, n.24, p.16-21, 2023.
U.S. GEOLOGICAL SURVEY. Mineral commodity summaries 2020. Washington: U.S. Geological Survey, 2020. 200 p.
USDA – UNITED STATES DEPARTMENT OF AGRICULTURE. Production – Corn, Top Producing Countries. 2024/2025 Corn Production. 2025. Disponível em: https://www.fas.usda.gov/data/production/commodity/0440000. Acesso em: 26 jul. 2025.
VACHERON, J.; DESBROSSES, G.; BOUFFAUD, M.L.; TOURAINE, B.; MOËNNE-LOCCOZ, Y.; MULLER, D.; LEGENDRE, L.; WISNIEWSKI-DYÉ, PRIGENT-COMBARET, C. Plant growth-promoting rhizobacteria and root system functioning. Frontiers Plant in Science, Lausanne, v.4, n.1, p.1-19, 2013.
WALLING, E.; VANEECKHAUTE, C. Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. Journal of Environmental Management, Amsterdan, v.276, n.12, p.26-31, 2020.
WANG, Q.; LI, S.; LI, J.; HUANG, D. The utilization and roles of nitrogen in plants. Forests, Basel, v.15, n.7, p. 1-17, 2024.
WANG, X.; CHEN, Y.; SUN, X.; LI, J.; ZHANG, R.; JIAO, Y.; WANG, R.; SONG, W.; ZHAO, J.; Characteristics and candidate genes associated with excellent stalk strength in maize (Zea mays L.). Frontiers in Plant Science, Lausanne, v.13, n.1, p.1-17, 2022.
ZEFFA, D.M.; PERINI, L.J.; SILVA, M.B.; SOUSA, N.V.; SCAPIM, C.A.; OLIVEIRA, A.L.M.; AMARAL JÚNIOR, A.T.; GONÇALVES, L.S.A. Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. Plos One, San Francisco, v.14, n.4, p.1-20, 2019.
ZHANG, C.; LI, G.; CHEN, T.; FENG, B.; FU, W.; YAN, J.; ISLAM, M.R.; JIN, Q.; TAO, L.; FU, G. Heat Stress Induces Spikelet Sterility in Rice at Anthesis through Inhibition of Pollen Tube Elongation Interfering with Auxin Homeostasis in Pollinated Pistils. Rice, Heidelberg, v.11, n.1, p.14-22, 2018.
ZHANG, Y.; THOMAS, C.L.; XIANG, J.; LONG, Y.; WANG, X.; ZOU, J.; LUO, Z.; DING, G.; CAI, H.; GRAHAM, N.S.; HAMMOND, J.P.; KING, G.J.; WHITE, P.J.; XU, F.; BROADLEY, M.R.; SHI, L.; MENG, J. QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Scientific Reports, London, v.6, n.1, p.1-13, 2016.
ZHOU, Z.; LI, G.; TAN, S.; LI, D.; WEI, T.M.; WANG, X.; CHEN, S.; WÜRSCHUM, T.; LIU, W. A QTL atlas for grain yield and its component traits in maize (Zea mays). Plant Breeding, Weinheim, v.139, n.3, p.562-574, 202.
ZHU, J.; ZHANG, K.-X.; WANG, W.-S.; GONG, W.; LIU, W.-C.; CHEN, H.-G.; XU, H.-H.; LU, Y.-T. Low Temperature Inhibits Root Growth by Reducing Auxin Accumulation via ARR1/12. Plant Cell Physiology, Oxford, v.56, n.1, p.727-736, 2015.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Mauro Gomes da Silva Junior, Valdir Zucareli, Glaucia Leticia Sete da Cruz, Thiago Komuro Moriyama, Francisco José Cedorak de Lima, Juliana Parisotto Poletine

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Você tem o direito de:
- Compartilhar — copiar e redistribuir o material em qualquer suporte ou formato para qualquer fim, mesmo que comercial.
- Adaptar — remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.
De acordo com os termos seguintes:
- Atribuição — Você deve dar o crédito apropriado , prover um link para a licença e indicar se mudanças foram feitas . Você deve fazê-lo em qualquer circunstância razoável, mas de nenhuma maneira que sugira que o licenciante apoia você ou o seu uso.
- Sem restrições adicionais — Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.